Multivariable Optimization

X. Du

- Maximum and minimum (local and global)
- **Critical points**: points where ∇f is the zero vector or does not exist. Possible points for:
 - o Extrema
 - Saddle points
- Second Derivatives Test for a function of two variables f(x, y):
 - Let the discriminant $D(a,b) = f_{xx}(a,b)f_{yy}(a,b) (f_{xy}(a,b))^2$
 - If D(a,b) > 0 and either $f_{xx}(a,b) > 0$ or $f_{yy}(a,b) > 0$, then f(a,b) is a local minimum.
 - If D(a,b) > 0 and either $f_{xx}(a,b) < 0$ or $f_{yy}(a,b) < 0$, then f(a,b) is a local maximum.
 - If D(a,b) < 0, then f(a,b) is a saddle point.
 - If D(a,b) = 0, then the second derivatives test is inconclusive.
- Max-Min Theorem for a function of two variables f(x, y): Let *R* be a closed, bounded region in the xy-plane and let f(x, y) be continuous on *R*. Then f(x, y) has both an absolute maximum an absolute minimum on *R*, such that the absolute maximum and absolute minimum occur at a critical point inside *R* or on the boundary ∂R .
 - Check your extrema on your boundaries by substituting your boundary ∂R into your function or by using Lagrange multipliers.

• Lagrange Multipliers

- Optimize a function within constraints.
- A function of *n* variables must have n 1 constraints.
 - Note: That leaves 1 degree of freedom.
- Example: optimize f(x, y) within the constraint g(x, y) = k. The extreme value of f(x, y) on this boundary will occur at a point (x_o, y_o) such that

 $\nabla f(x_o, y_o) = \lambda \nabla g(x_o, y_o).$

• Example: optimize f(x, y, z) within the constraints g(x, y, z) = k and h(x, y, z) = c. The extreme value of f(x, y, z) given this constraint will occur at a point (x, y, z) such that $\nabla f(x, y, z) = 2\nabla g(x, y, z) + i\nabla h(x, y, z)$

 (x_o, y_o, z_o) such that $\nabla f(x_o, y_o, z_o) = \lambda \nabla g(x_o, y_o, z_o) + \mu \nabla h(x_o, y_o, z_o)$.

- Finally, solve a systems of equations to find the potential points which will yield extrema.
- Note: when optimizing the distance from the origin to a surface z = f(x, y), it is much easier to optimize distance squared using Lagrange multipliers.